14 research outputs found

    Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. RESULTS: Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. CONCLUSION: This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies.Published versio

    Early outcome in renal transplantation from large donors to small and size-matched recipients - a porcine experimental model

    No full text
    Ravlo K, Chhoden T, Sondergaard P, Secher N, Keller AK, Pedersen M, Bibby BM, Moldrup U, Ostraat EO, Birn H, Norregaard R, Marcussen N, Leuvenink HG, Jespersen B. Early outcome in renal transplantation from large donors to small and size-matched recipients A porcine experimental model. Abstract: Kidney transplantation from a large donor to a small recipient, as in pediatric transplantation, is associated with an increased risk of thrombosis and DGF. We established a porcine model for renal transplantation from an adult donor to a small or size-matched recipient with a high risk of DGF and studied GFR, RPP using MRI, and markers of kidney injury within 10 h after transplantation. After induction of BD, kidneys were removed from similar to 63-kg donors and kept in cold storage for similar to 22 h until transplanted into small (similar to 15 kg, n = 8) or size-matched (n = 8) recipients. A reduction in GFR was observed in small recipients within 60 min after reperfusion. Interestingly, this was associated with a significant reduction in medullary RPP, while there was no significant change in the size-matched recipients. No difference was observed in urinary NGAL excretion between the groups. A significant higher level of HO-1 mRNA was observed in small recipients than in donors and size-matched recipients indicating cortical injury. Improvement in early graft perfusion may be a goal to improve short- and long-term GFR and avoid graft thrombosis in pediatric recipients. (c) 2012 John Wiley & Sons A/S
    corecore